



# LightMat: Development of a Novel Magnesium Alloy For Thixomolding® of Automotive Components

G. Muralidharan (ORNL PI, Presenter), Shivakant Shukla, Artem Trofimov, and Hsin Wang, Oak Ridge National Laboratory

Bryan Macek (PI), Randy Gerken, FCA US LLC (Stellantis)

Nathan Sanko (Co-PI), Leggera Technologies

2021 DOE Vehicle Technologies Office Annual Merit Review

June 24, 2021

ORNL is managed by UT-Battelle, LLC

This presentation does not contain any proprietary, confidential, or otherwise restricted information. This project is a Cooperative Research and Development Agreement (CRADA), funded by Vehicle Technologies Office LightMAT Consortium. Certain data have been withheld and some data in this presentation have been sanitized for public release

### Timeline/Budget

- Program start: Feb. 2020
- Program end: Feb. 2022

### **Barriers**

- Mg alloys have insufficient ductility and energy absorption for crash protection
- Lack of low-cost, environmentally friendly magnesium production capability, atmospheres used for handling molten magnesium involve greenhouse gas subject to safety concerns
- Corrosion protection required for new alloys
- Long development time of advanced materials

### **Budget**

- Total Project Funding: \$ 1 M
  - DOE: \$500,000
  - Industrial cost share: \$500,000
- 40% Complete

### **Partners**

- Lead National Laboratory
  - –Oak Ridge National Laboratory (ORNL)
- Industrial Partners
  - FCA US LLC (Stellantis)
  - Leggera Technologies



### Relevance

- Reducing the weight of a conventional passenger car, battery electric and heavy-duty vehicles by 10% using lightweight Mg alloy components will result in a 6%— 8% improvement in fuel economy
- Availability of Mg alloy components with improved energy absorption and ease of manufacturing will reduce barriers for use and accelerate automotive lightweighting
- Alloys with optimum combination of ease of processing, strength, and ductility are needed

### **Objectives**:

- Develop a Mg alloy with ease of processing in thixomolding®
- New Mg alloy should achieve desired combination of strength and ductility in thixomolded<sup>®</sup> components



Current Wrangler Spare Tire Carrier (Thixomolded AM60B)





# **Background: Thixomolding® Process**

- Casting method where the alloy is
  - Heated to 560° to 600° C to the solid + liquid region and sheared until it reaches "dough-like" consistency
  - Injected into a mold
  - Duration of the injection process ~ 0.03 seconds
  - Cycle time 20 to 45 seconds.

### Advantages

- More uniform structure and lower porosity and/or cavity-free compared to die casting due to laminar flow front
- Fast freezing/cooling rates of > 100°C/s for molded parts
- Fine grain size and reduced eutectic size
- Higher ductility and fatigue strength
- Long die life, due to 80°C cooler metal temperatures than die casting
- Environmental friendliness, with no open foundry, no SF<sub>6</sub> gas,
   no sludge or dross with worker comfort and safety
- Higher process yield, less scrap
- Flexibility in part design, down to 0.7 mm thickness

### Viscosity decreases with shear rate\*

| Viscosity 10 <sup>-5</sup><br>Pas | 10-4    | 10-3             | 10-2      | 10-1             | 100                      | 10¹               | 10²                | 10³                  | 104             | 106 | 108 | 1012            |
|-----------------------------------|---------|------------------|-----------|------------------|--------------------------|-------------------|--------------------|----------------------|-----------------|-----|-----|-----------------|
| Non-<br>Metallic<br>Materials     | Acetone | Water            | Olive Oil | Yogurt           | Glycerin                 | Honey,<br>Ketchup | Chocolate<br>syrup | Molasses,<br>Bitumen |                 |     |     | Molten<br>Glass |
| Metallic<br>Alloys                |         | Liquid<br>Metals |           | $\dot{\gamma}=2$ | Se<br>200s <sup>-1</sup> | emi-so            | lid allo           |                      | fs=0.4<br>= 0.0 |     |     |                 |

\*Adapted from F. Czerwinski, Magnesium Injection Molding, Springer, 2008

### Schematic of Thixomolding® process



Figure courtesy Leggera Technologies



# Existing Die Casting Alloys Trade Ease of Thixomolding® **For Mechanical Properties**

- Existing alloys have been primarily designed for injection molding in liquid state (for die casting)
- Components thixomolded® with die casting alloys do not have balanced properties
  - AZ91D has good processing characteristics, high strength, but poor ductility
  - AM60B has good ductility but needs improvement in strength and processing characteristics
- Need to design new alloys with balanced properties for thixomolded® components
  - Increase liquid + solid range to have good control on solid fraction at injection temperature
  - Target microstructure to increase ductility while maintaining or improving strength (e.g. achieve fine grain size)
  - Maintain/improve corrosion resistance

#### Composition and properties of thixomolded alloys

| Alloy | Mg  | Al | Zn  | Mn  | Yield<br>Strength<br>(MPa) | Elongation |
|-------|-----|----|-----|-----|----------------------------|------------|
| AM60B | Bal | 6  | 0.2 | 0.3 | 121                        | 16         |
| AZ91D | Bal | 9  | 0.7 | 0.3 | 158                        | 6          |

#### Ease of Processing



#### Melting range of AZ91D is wider and solidus is lower than AM60B\*



\*Adapted from F. Czerwinski, Die casting Engineer, Nov. 2004

# **Approach**

- Task 1: Establish required/desired properties using study of baseline component
- Task 2: Alloy development using computational modeling
- Task 3: Alloy ingot and chip production
- Task 4: Produce component tooling
- Task 5: Component production
- Task 6: Material characterization and Computer-Aided Engineering (CAE)
- Task 7: Component evaluation



### Alloy Design Balances Solidification Characteristics with Mechanical Properties





### FY20-FY21 Milestones

| Month/<br>Year   | Milestone Description                                                                                                                      | Status    |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| June 2020        | Establish desired material properties                                                                                                      | Completed |
| Dec. 2020        | Fabricate laboratory scale heats of promising, modified alloys                                                                             | Completed |
| Mar. 2021        | Initial down-selection of compositions with good tensile properties and corrosion behavior with improved characteristics for thixomolding® | Completed |
| <b>June 2021</b> | Produce alloy ingot and chip                                                                                                               | On-track  |
| Sept. 2021       | Produce components using down-selected alloy                                                                                               | On-Track  |

# Material From Different Regions of Baseline Component Spare Tire Carrier Was Evaluated For Microstructure and Mechanical Properties

- Base Thixomolded<sup>®</sup>
   Component
  - Spare tire carrier fabricated by Leggera Technologies using AM60B
- Small sections of material were removed from different locations
- Microstructure and mechanical properties were evaluated







# Microstructure and Mechanical Properties Have Been Evaluated To Establish Baseline



Primary  $\alpha$ -Mg nodules





Proeutectic  $\alpha$ -Mg



Eutectic Al<sub>12</sub>Mg<sub>17</sub>



Yield Strength = 131 MPa Elongation to failure = 18.4%



# Phase Content After Solidification in AM60B Consistent with Predictions



Al- rich Interdendritic (Al<sub>12</sub>Mg<sub>17</sub>) Phases



# Computational Modeling Used to Identify New Alloys with Melting Range Comparable to AZ91D



# **Laboratory Scale Heats Have Been Cast at ORNL**





½" X1" X5" ingots cast at ORNL



# Thermodynamic Predictions for Liquidus and Solidus Are Being Validated Using Differential Scanning Calorimetry (DSC) Measurements



# New Alloys With Improved Melting Range, and Required Ductility Have Been Identified





# Response to Reviewers Comments

Project was not reviewed last year.



### **Collaborations and Coordination with Other Institutions**

- Oak Ridge National laboratory: National Laboratory partner
  - Evaluate microstructure and properties of base alloy obtained from component
  - Computational development of new alloys
  - Alloy property data development
  - Assist in process development
  - Evaluate properties of new alloy obtained from prototype component



- Provide guidance on property requirements
- Lead down-selection of alloy, ingot and chip production
- Corrosion testing
- CAE card development
- Prototype component design and evaluation

#### Leggera Technologies:

- Provide guidance on values of important process variables
- Provide baseline component for evaluation
- Supply baseline material for evaluation and alloy development
- Supply tooling and develop process for manufacturing prototype component using novel alloy
- Manufacture prototype component







# Remaining Challenges and Barriers

- Final down-selection of alloy/s which balance strength, ductility, and ease of processing must be completed
- Processing parameters must be developed for manufacturing tire carrier using new alloy based upon modeling and experiments
  - Determine appropriate injection temperature, and shear rate
- Corrosion behavior of alloy must be shown to be comparable to or better than baseline (AM60B)



# Viscosity decreases with increasing shear rate and increasing temperatures\*





# **Proposed Future Research**

- Corrosion Testing at Stellantis
  - ASTM G85 Annex 2 is a cyclic acidified salt spray test, target duration is based on 10-year service
- Final alloy down-selection based upon DSC results, tensile testing, and microstructure evaluation
- Ingot and chip fabrication
- Prototype component fabrication at Leggera Technologies
- Analysis of prototype component at Stellantis and ORNL



(1) Mg alloy with standard pre-treatment and powder coat (2) Hem adhesive, (3) aluminum sheet and e-coat



Prototype Wrangler Spare Tire Carrier (Thixomolded ® New Alloy)
Improved ductility / fracture resistance



# Summary

#### Relevance:

- Reducing the weight of a conventional passenger car, battery electric and heavy-duty vehicles by 10% using lightweight Mg alloy components will result in a 6%–8% improvement in fuel economy
- Thixomolded components have finer grain size, higher ductility, and lower porosity than die cast components

### Approach/Strategy:

- Existing die cast alloys are not ideally suited for thixomolding® process
- Alloys with optimum combination of ease of processing, strength, and ductility are needed

### Accomplishments:

 New alloys with wider melting range and good mechanical properties have been identified using computational modeling and laboratory scale heats

#### Collaborations:

This work is a CRADA between Oak Ridge National Laboratory, Stellantis, and Legerra Technologies

### Proposed Future Work:

Prototype spare tire carrier will be thixomolded<sup>®</sup> using one new alloy and will be evaluated

